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Abstract: We have investigated the finite temperature systems of non-BPS D-branes

and D-brane−anti-D-brane pairs in the previous papers. It has been shown that non-BPS

D9-branes and D9-D9 pairs become stable near the Hagedorn temperature on the basis of

boundary string field theory. This implies that there is a possibility that these spacetime-

filling branes exist in the early universe. We study the time evolution of the universe in the

presence of non-BPS D9-branes on the basis of boundary string field theory in this paper.

We try to construct the following scenario for the early universe: The universe expands at

high temperature and the open string gas on the non-BPS D9-branes dominates the total

energy of the system at first. The temperature decreases as the universe expands. Then

the non-BPS D9-branes become unstable at low temperature and decay through tachyon

condensation. We obtain some classical solutions for Einstein gravity and dilaton gravity

in the very simple cases.
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1. Introduction

Non-BPS D-branes and D-brane−anti-D-brane pairs are unstable systems in superstring

theory [1] (for a review see, e.g., ref. [2]). Type IIB string theory contains non-BPS D-

branes of even dimension and D-brane−anti-D-brane pairs of odd dimension, whereas type

IIA string theory contains non-BPS D-branes of odd dimension and D-brane−anti-D-brane

pairs of even dimension. The spectrum of open strings on these unstable branes contains

a tachyon field T . In such a brane configuration, we have T = 0, and the potential of this

tachyon field has a local maximum at T = 0. If we assume that the tachyon potential has

a non-trivial minimum, it is hypothesized that the tachyon falls into it. Sen conjectured

that the potential height of the tachyon potential exactly cancels the tension of the original

unstable D-branes [3]. This implies that these unstable brane systems disappear at the end

of the tachyon condensation.

We have pointed out in the previous papers that there are the cases that these unstable

branes become stable at sufficiently high temperature [4 – 6].1 In particular, the spacetime-

filling branes such as non-BPS D9-branes and D9-D9 pairs become stable near the Hagedorn

temperature in all the cases we have studied. The aim of this paper is to apply these works

to cosmology. We will investigate the time evolution of the universe in the presence of

non-BPS D9-branes.

1For related discussions see refs. [7] and [8].
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We can calculate the tachyon potential for these unstable branes by using boundary

string field theory (BSFT) [9, 10]. The tree level tachyon potential of N non-BPS D-branes

is given by [11, 12]2

V (T) =
√

2 τpVp Tr exp(−αT2), (1.1)

where T is a real scalar field in the (N,N ) representation of the U(N) × U(N) gauge

group [13], τp is the tension of a single Dp-brane, Vp is the p-dimensional volume of the

system that we are considering, and α is a constant which depends on the notation. τp is

defined by

τp =
1

(2π)pα′
p+1

2 gs

, (1.2)

where gs is the coupling of strings, which is represented as

gs = eφ, (1.3)

by using the dilaton φ. α′ is the slope parameter and we will set α′ = 1 when we perform

numerical calculations. The potential has a local maximum at T = 0. It becomes minimum

when Tr exp(−αT2) = 0, and it satisfies Sen’s conjecture. Let us suppose that T has the

following form;

T =















T 0

·
·
·

0 T















. (1.4)

Then the tachyon potential is given by

V (T ) =
√

2 NτpVp exp(−αT 2). (1.5)

The potential has a local maximum at T = 0 and has the minimum at |T | = ∞ in this

case. We will deal with only this type of matrix in this paper.

We summarize here the results of our previous works about the finite temperature

systems of non-BPS D-branes and D-brane−anti-D-brane pairs in a constant tachyon ba-

ckground [4 – 6]. Since we can obtain the similar results both in the case of D-brane−anti-

D-brane pairs and non-BPS D-branes, we only review the non-BPS D-brane case here. We

have computed the finite temperature effective potential by using the Matsubara method in

the framework of BSFT in order to study the thermodynamical behavior of these systems.

If we consider the one-loop amplitude based on BSFT, we are confronted with an ambiguity

in the choice of the Weyl factors of the two boundaries of open string world sheet. We have

used the boundary action which has been proposed by Andreev and Oft [14].

We have investigated non-BPS Dp-branes in a non-compact flat 10-dimensional Min-

kowski background. The result of the non-BPS D9-brane case is in sharp contrast to that

of the non-BPS Dp-brane case with p ≤ 8. In the case of N non-BPS D9-branes, the

2We adopt the natural unit c = ~ = 1.
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T 2 term of the finite temperature effective potential near the Hagedorn temperature is

approximated as

α

8

[

−8
√

2 Nτ9V9 +
4πN2V9

βH
10 ln

(

πβH
10E

N2V9

)]

T 2, (1.6)

where E is the energy of open strings. Here, we must impose the condition that the ’t

Hooft coupling is very small, namely,

gsN ¿ 1, (1.7)

for the one-loop approximation. Because the first term in the coefficient of T 2 is a constant

as long as V9 and τ9 are fixed and the second term is an increasing function of E, the sign

of the T 2 term changes from negative to positive at large E. The coefficient vanishes when

Ec ' N2V9

πβH
10 exp

(

2
√

2βH
10τ9

πN

)

, (1.8)

Tc ' βH
−1

[

1 + exp

(

−
√

2βH
10τ9

πN

)]−1

. (1.9)

From this we can see that a phase transition occurs at the temperature Tc, which is slightly

below the Hagedorn temperature, and the non-BPS D9-branes are stable above this critical

temperature. The total energy at the critical temperature is a decreasing function of N as

long as the ’t Hooft coupling is very small in these cases. This implies that a large number N

of non-BPS D9-branes are created simultaneously.3 For the non-BPS Dp-branes with p ≤ 8,

on the other hand, the coefficient remains negative near the Hagedorn temperature, so that

such a phase transition does not occur. We thus concluded that not lower dimensional non-

BPS D-branes but non-BPS D9-branes are created near the Hagedorn temperature.

We have also investigated non-BPS Dp-branes in a toroidal background. We have sup-

posed that D-dimensional space is compactified and that the rest of the (9−D)-dimensional

space is left uncompactified (M1,9−D × TD). We have also assume that the non-BPS Dp-

branes extend in the d-dimensional space in the non-compact direction and in the (p− d)-

dimensional space in the toroidal direction. If D + d = 9, that is, the non-BPS Dp-branes

are extended in all the non-compact directions, a phase transition occurs near the Hage-

dorn temperature and these branes become stable. On the other hand, if D + d ≤ 8,

that is, the non-BPS Dp-branes are not extended in all the non-compact directions, such

a phase transition does not occur. It is noteworthy that spacetime-filling branes, such as

non-BPS D9-branes and D9-D9 pairs, are created at sufficiently high energy not only in

a non-compact background but also in a toroidal background, since these branes always

satisfy D + d = 9.

3We cannot determine the value of Nmin with a perturbative calculation. In order to determine it, we

must perform a non-perturbative calculation based on, for example, the matrix model [15] or the IIB matrix

model [16]. The K-matrix model may also be useful, as it explicitly contains the tachyon field [17].
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These results drive us to the question what happens if we apply the above arguments to

cosmology. There is a possibility that non-BPS D-branes and D-brane−anti-D-brane pairs

exist in the early universe. We investigate the evolution of the universe in the presence of

non-BPS D9-branes in this paper. We choose the non-BPS D9-branes because they become

stable near the Hagedorn temperature in all the cases we have studied, and we can impose

the homogeneous and isotropic condition if we consider such spacetime-filling branes.4 We

must consider gravity coupled to non-BPS D9-branes in order to analyze a time evolution

of the universe.

There has recently been a great deal of interest in brane inflation [18 – 20] (for a review

see, e.g., ref. [21]). If we consider Einstein gravity in the presence of spacetime-filling

branes, the universe expands in an inflationary manner, because the tension energy of

these branes can provide an effective cosmological constant. These work has been done by

using Dirac-Born-Infeld type action [22, 24]5. However, since we have computed the finite

temperature effective potential on the basis of BSFT, it is natural to deal with the tachyon

field in the framework of BSFT. The time dependent background at zero temperature has

been discussed by Sugimoto and Terashima in the framework of BSFT [25]. They have also

argued the production of tachyon matter [24] after the decay of the non-BPS Dp-brane in

the framework of BSFT. It would be interesting to generalize their calculation to the finite

temperature case. It is expected that, even if these branes are stable near the Hagedorn

temperature initially, they become unstable because the energy density decreases as the

universe expands. This implies that the initial conditions of a rolling tachyon are realized

in the early universe. Namely, the tachyon field is placed on the top of the potential. Then

the tachyon starts to roll down from the local maximum of the potential at T = 0 [24].

The spacetime-filling branes are very advantageous in the sense that all the lower-

dimensional D-branes in type II string theory are realized as topological defects through

tachyon condensation from non-BPS D9-branes and D9-D9 pairs. We can identify the

topological charge as the Ramond-Ramond charge of the resulting D-branes [1, 3]. These D-

brane charges can be classified using K-theory [26, 27]. Thus, if non-BPS D9-branes exist in

the early universe, various kinds of branes may form through tachyon condensation [28]. It

would be interesting to examine the possibility that our Brane World forms as a topological

defect in a cosmological context [20, 28 – 31]. In this paper, we study the homogeneous and

isotropic tachyon condensation as a first step towards ‘Brane World Formation Scenario’6.

This paper is organized as follows. In section 2 we describe the action we consider.

We investigate the time evolution of the universe in the high temperature case and in the

zero temperature case in order to construct a cosmological scenario in the following two

sections. We calculate the cosmological solution by using Einstein gravity in section 3,

4We investigate the non-BPS D9-brane case instead of the case of the lower-dimensional non-BPS D-

branes with D + d = 9 in a toroidal background, because it is expected that the spacetime-filling branes

provide rich structure for the formation of lower-dimensional D-branes as we will mention below.
5Calcagni has investigated the brane inflation by using cubic string field theory in ref. [23].
6In this paper, we investigate the simplest case in the presence of the non-BPS D9-branes, namely, the

homogeneous and isotropic (9+1)-dimensional spacetime case, and leave the construction of our (3 + 1)-

dimensional Brane World for future work.
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and by using dilaton gravity in section 4. We conclude in section 5 with a discussion of

future directions. We have also included an appendix, in which we shortly mention the

Minahan-Zwiebach model case.

2. Action

We will begin with describing the action for gravitational field. The low energy effective

action for tree level closed strings is described by type IIA supergravity. For simplicity, we

shall focus on 10-dimensional metric gµν and dilaton φ, and set the other fields to zero.

Then the action is given by

Sdil = − 1

2κ2

∫

d10x
√−g e−2φ (R + 4∇µφ∇µφ) , (2.1)

where the constant κ is defined as

κ2 =
1

2
(2π)7α′4, (2.2)

and R denotes the scalar curvature. We will investigate the time evolution of the universe

in the string frame by using this action in section 4. If we consider the constant dilaton

case, then the action is given by usual Einstein-Hilbert one

SE = − 1

2κ2

∫

d10x
√−g R. (2.3)

We can apply this action when the dilaton has settled down to the (local) minimum of the

dilaton potential, which is expected to be generated by a non-perturbative effect in string

theory [32]. We will investigate the time evolution of the universe by using this action in

section 3.

We must also consider the action for non-BPS D9-branes. For simplicity, we only

deal with the high temperature case and the zero temperature case. Although we have

derived the free energy formally at any temperature, it is very complicated function at

the intermediate temperature [4 – 6]. First, let us describe the high temperature case. If

there are N non-BPS D9-branes, the tachyon field T is an N × N real matrix in the

adjoint representation of the U(N) gauge group [1] as we have mentioned in the previous

section. In the case that the universe is sufficiently hot and the non-BPS D9-branes are

stable, T = 0 is the potential minimum [6]. It is sufficient to deal with the action for

open string gas because the total energy is dominated by open string gas if we consider the

thermodynamic balance between open string gas and closed string one [6]. In this case the

action is represented as

Sgas =

∫

d10x
√−g F (β

√
g00), (2.4)

where F is the free energy of open string gas, and β is the inverse of the temperature. We

have omitted the argument T of the free energy F because we are considering the case

that the tachyon stays at the potential minimum T = 0. We will argue the cosmological

– 5 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
0

solution by using this action in section 3.1 and section 4.1. The energy-momentum tensor,

which we can derive from this action, can be represented in a perfect fluid form such as

Tµ
ν = diag(−ρ, p, · · ·, p). (2.5)

by using energy density ρ and pressure p. The entropy of open strings on non-BPS D9-

branes near the Hagedorn temperature have been computed in [6]. The result is

S ' βHE +
2N

βH
4

√

EV9

π
. (2.6)

From this we can compute the equation of state as

p =
1

β

∂S

∂V9
' w

√
ρ, (2.7)

where the proportional constant w is given by

w =
N√
πβH

5 . (2.8)

It is noteworthy that this equation of state is different from the usual one, which is rep-

resented as p ∝ ρ. The approximation (2.6) is valid only when the first term in the right

hand side is much larger than the second term. This means that we can apply the equation

of state (2.7) if the energy density ρ satisfies

ρ À w2. (2.9)

Namely, we can apply the approximation when the energy density is much larger than the

string scale. This condition is crucial when we argue the cosmological solution near the

Hagedorn temperature.

Secondly, we describe the zero temperature case. Since we have computed the finite

temperature effective potential for non-BPS D-branes on the basis of BSFT, it is consistent

to argue the zero temperature case in the framework of BSFT. The BSFT action for a linear

tachyon profile in the flat spacetime is derived in ref. [11]. Let us focus on tachyon T in

the open string spectrum, as well as graviton gµν and dilaton φ in the closed string one,

and assume that the action in the curved spacetime is given by

SdilT = µ0

∫

d10x
√
−g e−φ Tr e−αT

2F (λ∇µT∇µT) , (2.10)

where α and λ are constants. If we follows the notation of ref. [2], α = 1/4 and λ = α′ ln 2.

µ0 is the constant part of the tension of a single non-BPS D9-brane, namely,

µ0 =

√
2

(2π)9α′5
, (2.11)

and the function F(z) is defined as

F(z) =

√
π Γ(z + 1)

Γ
(

z + 1
2

) . (2.12)

– 6 –
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Here we include the factor e−φ as a contribution of dilaton since this action is derived from

the tree level (disk) amplitude of open strings. Strictly speaking, we have not succeeded

in constructing the action for open string tachyon field coupled to closed string modes. In

addition, we have dropped the terms which include second and higher derivative of the

tachyon field. There is room for argument on these points. We expect that the qualitative

behavior of the time evolution of the universe can be described by this action. For simplicity,

let us consider the case that T is given by (1.4). Then the action can be rewritten as

SdilT = µ

∫

d10x
√−g e−φe−αT 2F (λ∇µT∇µT ) , (2.13)

where we have defined µ = µ0N . We will argue the cosmological solution by using this

action in section 4.2. If we assume that the dilaton is a constant, the action is given by

ST = µ

∫

d10x
√−g e−αT 2F (λ∇µT∇µT ) , (2.14)

where the factor e−φ can be absorbed into a redefinition of µ. We will argue the cosmological

solution by using this action in section 3.2. Sugimoto and Terashima have shown that

tachyon matter is produced by the decay of the non-BPS Dp-brane in the flat spacetime and

investigated the qualitative behavior of the cosmological solution by using this action [25].

The tachyon matter is pressureless gas with non-zero energy density, that is, its equation

of state is represented as p = 0 [24]. We will discuss the production of the tachyon

matter in our cosmological model. If the derivative of T is very small, then by using the

approximation formula

F(z) ' 1 + (2 ln 2)z, (2.15)

under the condition z ¿ 1, we obtain the action in the Minahan-Zwiebach model [33]

SMZ = µ

∫

d10x
√−g e−αT 2

(λ∇µT∇µT + 1). (2.16)

Sugimoto and Terashima have pointed out that T diverges within finite time if we sup-

pose this action [25]. We will shortly mention the numerical calculation in the Minahan-

Zwiebach model case in appendix A.

3. Constant dilaton case

We investigate the time evolution of the universe in the constant dilaton case as a simple

example of gravity coupled to the open string gas or the open string tachyon in this section.

Although the constant dilaton is not a solution of dilaton gravity case as we will explain

in the next section, we can apply this calculation if the dilaton has settled down to the

(local) minimum of the dilaton potential as we have mentioned in the previous section.

3.1 Open string gas case

Let us first consider the high temperature case. In this case, it is sufficient to consider the

action for open string gas for the system of strings and non-BPS D9-branes. Previously

– 7 –
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Einstein gravity coupled to open string gas on BPS D-branes has been inyvestigated in the

context of inflation due to the winding modes of open strings [34]. We will show different

type of solution. The action we consider here is the sum of the Einstein-Hilbert action

(2.3) and that for the open string gas (2.4). In this case, the equation of motion is simply

given by the Einstein equation

Rµν − 1

2
gµνR− κ2Tµν = 0. (3.1)

Let us assume that the universe is spatially homogeneous and isotropic, for simplicity. We

also suppose that the spatial curvature is flat. Then the line element is that of the spatially

flat Robertson-Walker metric

ds2 = −dt2 + a2(t)

9
∑

i=1

(dxi)2, (3.2)

where a(t) is a scale factor and is a function of time t. We also suppose that the energy

density ρ and the pressure p are functions of t,

ρ = ρ(t), (3.3)

p = p(t). (3.4)

Under these conditions, the Einstein equation (3.1) can be rewritten as

36H2 − κ2ρ = 0, (3.5)

8Ḣ + 36H2 + κ2p = 0, (3.6)

where H is the Hubble parameter

H =
ȧ

a
, (3.7)

and dot denotes the time derivative. From these equations, we can derive a modified energy

conservation equation

Ė + 9HP = 0, (3.8)

where E and P are defined as

E ≡ ρa9, (3.9)

P ≡ pa9. (3.10)

E is the total energy of open string gas. Substituting the equation of state for open string

gas (2.7) into (3.8), we obtain

E = (E0
1

2 − wa
9

2 )2, (3.11)

where the constant E0 equals to the total energy E if the scale factor a vanishes. We can

easily derive the general solution for equations of motion by using these equations. The

expansion solution is given by

a(t) =

(

E0

w2

) 1

9
[

1 − exp

(

− 3wκ

4
t + c

)] 2

9

, (3.12)
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Figure 1: The time evolution of the scale factor a(t) in the case of Einstein gravity coupled to

open string gas. We have omitted the factor (E0/w2)1/9 and have set c = 0.

where c is an integration constant. We display the time evolution of the scale factor a(t)

in figure 1. The universe evolves in the decelerated expansion phase at first. We cannot

avoid the initial singularity in the framework of Einstein gravity coupled to open string

gas. We must consider the α′ correction near the curvature singularity. The scale factor

asymptotically approaches to the constant value as t → ∞. This is because the total energy

E asymptotically approaches to zero as we can see from (3.11), and we are considering the

case that the spatial curvature is zero. Thus, we cannot apply the equation of state (2.7) in

this region, because the condition (2.9) is no longer satisfied in this case. The time reversal

t → −t of (3.12) is also a solution and it represents a contraction solution.

3.2 Rolling tachyon case

Let us next consider the case that the tachyon rolls down the potential at zero temperature.

The action we consider is the sum of Einstein-Hilbert one (2.3) and that for the tachyon

field (2.14). In this case, the equation of motion is given by

Rµν − 1

2
gµνR + µκ2e−αT 2

gµνF(λ∇αT∇αT )

−2µκ2e−αT 2

λ∇µT∇νTF ′(λ∇αT∇αT ) = 0, (3.13)

2λ2∇µ∇βT∇βT∇µTF ′′(λ∇µT∇µT )

+λ (∇µ∇µT − 2αT∇µT∇µT )F ′(λ∇µT∇µT )

+αTF(λ∇µT∇µT ) = 0. (3.14)

We assume that the universe is homogeneous and isotropic like in the previous subsection,

and that the tachyon T is a function of t

T = T (t), (3.15)

as well as the line element is given by that of the spatially flat Robertson-Walker metric

(3.2). Then the equations of motion are rewritten as

– 9 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
0

1100 1200 1300 1400 1500t
5·109
1·1010
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a
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50

100
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200

T

Figure 2: The time evolution of the scale factor a(t) (left) and the tachyon field T (t) (right) in the

case of Einstein gravity coupled to tachyon field. We have set a0 = N = 1. The initial condition

for the tachyon is T = 10−10 and Ṫ = 0 at t = 1000. We choose such a small initial value of T in

order to show the inflation phase exists before the decelerated expansion phase.

36H2 − µκ2e−αT 2F(−λṪ 2) − 2µκ2e−αT 2

λṪ 2F ′(−λṪ 2) = 0, (3.16)

8Ḣ + 36H2 − µκ2e−αT 2F(−λṪ 2) = 0, (3.17)

2λ2Ṫ 2T̈F ′′(−λṪ 2) − λ
(

T̈ + 9HṪ − 2αT Ṫ 2
)

F ′(−λṪ 2)

+αTF(−λṪ 2) = 0. (3.18)

There are three equations although we have only two unknown functions a(t) (or H(t))

and T (t). However, we can show that independent equations are only two equations.

In order to perform the numerical calculation, we must choose a reasonable initial

condition. We have supposed that the non-BPS D9-branes are stable and T = 0 in the

high temperature case. We can easily solve the equations of motion at zero temperature

if the tachyon remains at T = 0. Substituting T = 0 into above equations of motion, we

obtain the de Sitter solution

a = a0 exp

(

1

6
µ

1

2 κt

)

, (3.19)

where the constant a0 is the scale factor at t = 0. This is because the tension energy

of these branes can provide an effective cosmological constant. Thus, it is reasonable

to choose the initial condition which is close to the de Sitter solution. We calculate the

numerical solution by choosing (3.17) and (3.18) as the independent equations as is depicted

in figure 2. From this we can see that the tachyon asymptotically approaches to a linear

function of t. Sugimoto and Terashima have pointed out that the tachyon asymptotically

approaches to

T → t√
λ

+ const. (3.20)

as t → ∞ [25]. This comes from the divergence of F(z) and its derivative at z = −1. We

can derive (3.20) from −λṪ 2 = −1. Sugimoto and Terashima have shown that the ratio

p/ρ for the tachyon field vanishes at z = −1. Thus, tachyon matter is produced in this

case. As we can see from figure 2, the scale factor asymptotically approaches to a constant

as t → ∞. This is because the energy density of the tachyon field approaches to zero as

– 10 –
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t → ∞ and we are considering the case that the spatial curvature is zero. The inflation

phase continues for a long time if we choose large N or small initial value of T .

The whole story in the constant dilaton case is summarized as follows. The universe

evolves in the decelerated expansion phase near the Hagedorn temperature at first. In

this phase, T = 0 is the potential minimum and Non-BPS D9-branes are stable. The

temperature decreases as the universe expands. Then T = 0 becomes the local maximum

of the potential and the universe expands inflationary. The tachyon starts to roll down

the potential and the non-BPS D9-branes decay. Finally, the universe turns to be in the

decelerated expansion phase.

4. Dilaton gravity case

We have discussed the constant dilaton case in the previous section. However, type IIA

supergravity contains dilaton gravity and the constant dilaton is not a solution in the

dilaton gravity without dilaton potential as we will see below. Even if the dilaton potential

exists, there is no reason why the dilaton settles down to the potential minimum from

the beginning of the universe. In this sense it is natural to consider the scenario that

the dilaton starts from the any point in the dilaton potential, then it moves towards the

potential minimum, and finally it settles down to the potential minimum. As a first step

towards such a scenario, we will consider the dilaton gravity case without the dilaton

potential in this section.

4.1 Open string gas case

Let us first consider the high temperature case. The action we consider is the sum of that

for dilaton gravity (2.1) and that for open string gas (2.4). In this case, the equation of

motion in the string frame is calculated as

2Rµν + 4∇µ∇νφ − 2κ2e2φTµν = 0, (4.1)

R− 4∇µφ∇µφ + 4∇µ∇µφ = 0. (4.2)

We assume that the universe is homogeneous and isotropic like in the previous section, and

that the dilaton φ is a function of t,

φ = φ(t), (4.3)

as well as the line element, the energy density ρ and the pressure p are given by (3.2) ∼
(3.4), respectively. Then the equations of motion are rewritten as

9(Ḣ + H2) − 2φ̈ + κ2e2φρ = 0, (4.4)

Ḣ + 9H2 − 2Hφ̇ − κ2e2φp = 0, (4.5)

9(Ḣ + 5H2) + 2φ̇2 − 2φ̈ − 18Hφ̇ = 0. (4.6)

Since these equations of motion are invariant under the T-duality transformation [35] [36],

it is convenient to introduce the new variable ϕ as

ϕ ≡ 2φ − 9 ln a. (4.7)
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Then the equations of motion can be rewritten as

9H2 − ϕ̈ + κ2Eeϕ = 0, (4.8)

Ḣ − Hϕ̇ − κ2Peϕ = 0, (4.9)

ϕ̇2 − 2ϕ̈ + 9H2 = 0, (4.10)

where E and P are defined as (3.9) and (3.10), respectively. We can derive a modified

energy conservation equation (3.8) from these equations. Substituting the equation of state

for open string gas (2.7) into (3.8), we can also obtain the total energy E as a function of

the scale factor a as (3.11).

We must solve equations (4.8) ∼ (4.10) in order to obtain a(t) and φ(t) (or H(t)

and ϕ(t)). However, it is difficult to compute the exact solution for the above non-linear

differential equations. Recall that we can apply the equation of state (2.7) when the energy

density satisfies the condition (2.9), that is, it is much larger than the string scale, as we

have mentioned in section 2. From (3.11), this condition is satisfied only when

E0
1

2 À wa
9

2 , (4.11)

since w is close to the string scale energy density, and E is approximated as

E ' E0. (4.12)

Thus, the total energy is almost a constant. Substituting this into (3.8), we find out that

P ' 0. (4.13)

Previously, Tseytlin and Vafa have derived the cosmological solution in the case that P =

0 [37]. They investigated such a case because the equation of state of closed string gas can

be approximated as (4.13). In this case we can obtain the general solution. One of the

solutions is given by

a(t) = a0

(

t − b2

t + b1

)
1

3

, (4.14)

φ(t) = ln
a0

9 | t − b2 |
d(t + b1)2

, (4.15)

where a0, d, b1 and b2 are constants. b1 and b2 satisfy b1 + b2 > 0. d is given by

d =
κ2E0

2
. (4.16)

a0 corresponds to the value of a(t) at t → ±∞. This solution is defined in the region

t < −b1 or t > b2, and is an expansion one. Another solution is its time reversal t → −t

and is a contraction one. We shall concentrate on the expansion solution. Since the dilaton

φ in (4.15) is a function of t, the coupling of strings gs is also a function of t. It is given by

gs(t) = eφ(t) =
a0

9 | t − b2 |
d(t + b1)2

. (4.17)

– 12 –



J
H
E
P
0
3
(
2
0
0
6
)
0
7
0

-4 -2 2 4 t

1

2

3

4

5

a

-30 -20 -10 10 20 30 t

0.05

0.1

0.15

0.2

0.25
gs

Figure 3: The time evolution of the scale factor a(t) (left) and the string coupling gs(t) (right) in

the case of dilaton gravity coupled to open string gas. We have set a0 = b1 = b2 = d = 1.

We display the time evolution of the scale factor a(t) and the coupling gs(t) in figure 3.

For t < −b1, the universe evolves from the infinite past in the accelerated expansion

phase like superinflation solution in the pre-big bang scenario [38]. It should be noted that

there is no initial singularity. Then the scale factor and curvature diverge at t = −b1.

However, the temperature decreases as the scale factor increases, since the total energy E

is conserved. Then T = 0 becomes the local maximum of the tachyon potential, and the

tachyon starts to roll down the potential.

For t ≥ b2, on the other hand, the universe evolves in the decelerated expansion phase

at first. We cannot avoid the initial singularity in this case. We must consider the α′

correction near the curvature singularity. The scale factor asymptotically approaches to

a constant like in the constant dilaton case in the previous section. If the integration

constants satisfy E0
1

2 À wa0
9

2 , the universe remains constant volume, while if they satisfy

E0
1

2 ≤ wa0
9

2 , we cannot apply the equation of state (2.7) or (4.13) when the energy density

no longer satisfies the condition (2.9). The tachyon rolls down the potential in the latter

case. We will investigate the rolling tachyon case in the next subsection.

4.2 Rolling tachyon case

Let us next consider the case that the tachyon rolls down the potential at zero tempera-

ture. The action we consider is the sum of that for dilaton gravity (2.1) and that for the

tachyon and the dilaton (2.13). In this case, the equations of motion in the string frame is

calculated as

2Rµν + 4∇µ∇νφ − µκ2eφ−αT 2 {

4λ∇µT∇νTF ′(λ∇αT∇αT )

−gµνF(λ∇αT∇αT )} = 0, (4.18)

R− 4∇µφ∇µφ + 4∇µ∇µφ − µκ2eφ−αT 2F(λ∇µT∇µT ) = 0, (4.19)

2λ2∇µ∇βT∇βT∇µTF ′′(λ∇µT∇µT )

+λ (∇µ∇µT − 2αT∇µT∇µT −∇µφ∇µT )F ′(λ∇µT∇µT )

+αTF(λ∇µT∇µT ) = 0. (4.20)
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We assume that the universe is homogeneous and isotropic like in the previous section, and

that the line element, the tachyon T and the dilaton φ are given by (3.2), (3.15) and (4.3),

respectively. Then the equations of motion are rewritten as

18(Ḣ + H2) − 4φ̈ + µκ2eφ−αT 2
{

4λṪ 2F ′(−λṪ 2) + F(−λṪ 2)
}

= 0, (4.21)

2(Ḣ + 9H2) − 4Hφ̇ + µκ2eφ−αT 2F(−λṪ 2) = 0, (4.22)

18(Ḣ + 5H2) + 4φ̇2 − 4φ̈ − 36Hφ̇ − µκ2eφ−αT 2F(−λṪ 2) = 0, (4.23)

2λ2Ṫ 2T̈F ′′(−λṪ 2) − λ
(

T̈ + 9HṪ − 2αT Ṫ 2 − φ̇Ṫ
)

F ′(−λṪ 2)

+αTF(−λṪ 2) = 0. (4.24)

There are four equations although we have only three unknown functions a(t) (or H(t))

φ(t) and T (t). However, we can show that independent equations are only three equations

under the condition φ̇ 6= 0. This means that the constant dilaton is not a solution.

In order to obtain the reasonable initial condition for numerical calculation, we derive

the exact solution in the T = 0 case, namely, when the tachyon remains at metastable

point. In this case the independent equations of motion is obtained from (4.21) ∼ (4.24)

as

−36H2 − 2φ̇2 + 18Hφ̇ + µκ2eφ = 0, (4.25)

4Ḣ − φ̈ + Hφ̇ = 0. (4.26)

Now we derived these equations in the string frame. If we consider the same problem in

the Einstein frame, we obtain Einstein gravity coupled to a scalar field with an exponential

potential. Previously the exact solution in such a case is calculated in [39]. We can apply

the similar method to our case. In order to solve these equations, it is convenient to define

the variables u, v, τ as

ln a − 1

4
φ =

1

9
(u + v), (4.27)

φ =
4

3
(v − u), (4.28)

dτ

dt
=

3µ
1

2 κ

4
exp

[

− 2

3
(u − v)

]

. (4.29)

Then, using these variables, the equations of motion can be rewritten as

u′v′ = 1, (4.30)

u′′ + v′′ + 2(v′)2 − 2u′v′ = 0, (4.31)

where prime denotes the derivative by τ . Eliminating u from these equations, we obtain
{

1 − 1

(v′)2

}

{

v′′ + 2(v′)2
}

= 0. (4.32)

If we choose (v′)2 = 1, we obtain the constant dilaton solution, which does not satisfy the

condition φ̇ 6= 0. Thus, we have to choose

v′′ + 2(v′)2 = 0. (4.33)
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Figure 4: The time evolution of the scale factor a(t) (left) and the string coupling gs(t) (right) in

the T = 0 case. We have set c1 = 1, c2 = c3 = c4 = 0.

Substituting (4.30) and (4.33) into (4.31), we obtain

u′′ − 2 = 0. (4.34)

We can easily derive the general solution of these equations as

u = τ2 + c3τ + c4, (4.35)

v =
1

2
ln |c1τ + c2|, (4.36)

where c1 ∼ c4 are integration constants. From (4.30), (4.35) and (4.36), we can see that

c1, c2 and c3 are related as

c1c3 = 2c2. (4.37)

Substituting (4.35) and (4.36) into (4.27) ∼ (4.29), we obtain the solution in the T = 0

case as

φ =
2

3

{

ln |c1τ + c2| − 2(τ2 + c3τ + c4)
}

, (4.38)

a = |c1τ + c2|
2

9 exp

[

− 2

9
(τ2 + c3τ + c4)

]

, (4.39)

dτ

dt
=

3µ
1

2 κ

4
|c1τ + c2|

1

3 exp

[

− 2

3
(τ2 + c3τ + c4)

]

, (4.40)

by using the parameter τ . Since the right hand side of the last equation (4.40) is positive

in τ < −c2/c1 and τ > −c2/c1, t is a monotone increasing function of τ in both regions.

We display the time evolution of the scale factor a(t) and the coupling gs(t) in figure 4.

For τ ≤ −c2/c1, the universe evolves in the accelerated expansion phase at first and turns

to be in the decelerated expansion phase, then contracts towards a singularity, while for

τ ≥ −c2/c1 the universe evolves in the decelerated expansion phase at first and turns to be

in the contraction phase. The accelerated expansion solution in the high temperature case

naturally connects to the accelerated expansion phase in τ ≤ −c2/c1, while decelerated

expansion solution in the high temperature case to the decelerated expansion phase in

τ ≥ −c2/c1.
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Figure 5: The time evolution of the scale factor a(t) (left), the string coupling gs(t) (right) and

the tachyon T (t) (below) for c1 = 1. We have set N = 1, c2 = c3 = c4 = 0. The initial condition

for the tachyon is T = 0.01 and Ṫ = 0 at τ = 0.1.

Before turning to the numerical calculation, we mention the time evolution of the uni-

verse after the tachyon rolls down the potential. In this case, tachyon matter is produced,

since the tachyon asymptotically approaches to the linear function of t (3.20) as we will

see below. The equation of motion for the tachyon matter is given by p = 0. So, it is

expected that the solution in the rolling tachyon case asymptotically approaches to the

P = 0 solution which we obtained in the high temperature case in the previous subsection.

Therefore, if there is a solution which interpolate smoothly between the inflation phase in

the T = 0 case and the decelerated expansion solution in the P = 0 case, such a solution

represent a completely non-singular cosmological model as has been proposed in the pre-big

bang scenario [38].

Let us now turn to the numerical calculation. From the equations of motion (4.21) ∼
(4.24), we can obtain as in figure 6.

φ̈ = φ̇2 − 18H2 − 5

2
µκ2eφ−αT 2F(−λṪ 2), (4.41)

Ḣ = 2Hφ̇ − 9H2 − 1

2
µκ2eφ−αT 2F(−λṪ 2), (4.42)

T̈ =
{

2λṪ 2F ′′(−λṪ 2) −F ′(−λṪ 2)
}−1

×
{(

9HṪ − 2αT Ṫ 2 − φ̇Ṫ
)

F ′(−λṪ 2) − α

λ
TF(−λṪ 2)

}

. (4.43)

We choose these equations as the independent equations for the numerical calculation.
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Figure 6: The time evolution of the scale factor a(t) (left), the string coupling gs(t) (right) and

the tachyon T (t) (below) for c1 = 0.1. We have set N = 1, c2 = c3 = c4 = 0. The initial condition

for the tachyon is T = 0.01 and Ṫ = 0 at τ = 0.1.

Let us first consider the initial condition close to the decelerated expansion phase for

τ ≥ −c2/c1 in the T = 0 case. It is expected that the decelerated expansion solution

in the high temperature case is smoothly connected to this phase. If we take a large c1,

the transition to the contraction phase occurs before the tachyon rolls down the potential.

We display the time evolution of the scale factor a(t), the coupling gs(t) and the tachyon

T (t) in the c1 = 1 case in figure 5. We must set c1 to a small value in order to keep the

decelerated expansion phase. We display the time evolution of the scale factor a(t), the

coupling gs(t) and the tachyon T (t) in the c1 = 0.1 case in figure 6. Thus, if we take a small

c1, we can connect the decelerated expansion phase in the T = 0 case to the decelerated

expansion solution in the P = 0 case. We can see from figure 5 and figure 6 that the tachyon

asymptotically approaches to the linear function of t (3.20) as t → ∞ in both cases, like

in the Einstein gravity case. Thus, the tachyon matter is produced, and the equation of

state for the tachyon field becomes p = 0. Taking the results in the high temperature case

into the consideration, we may be able to construct the cosmological scenario in which the

universe evolves in the decelerated expansion phase at high temperature, and this phase is

kept even at low temperature.

Secondly, let us consider the initial condition close to the decelerated expansion phase

for τ ≤ −c2/c1 in the T = 0 case. It is expected that the accelerated expansion solution

in the high temperature case is smoothly connected to the accelerated expansion phase

for τ ≤ −c2/c1 in the T = 0 case. The results are very sensitive to the initial condition.

If we set the tachyon T = 0.01 and its derivative Ṫ = 0 at τ = −1.17 the universe
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Figure 7: The time evolution of the scale factor a(t) (left), the string coupling gs(t) (right) and

the tachyon T (t) (below) for the initial parameter τ = −1.17. We have set N = c1 = 1, c2 = c3 =

c4 = 0. The initial condition for the tachyon is T = 0.01 and Ṫ = 0.

evolves from deceleration to acceleration as is depicted in figure 7, while if we set them at

τ = −1.16 the universe evolves from expansion to contraction as is depicted in figure 8.

The scale factor diverges or vanishes within finite time, and the curvature diverges in

both cases. The same observation applies to the small c1 case. Although it is not to be

denied that there is a special initial condition which leads to a solution without curvature

singularity, we obtain a solution with curvature singularity in general. It is difficult to

avoid the curvature singularity within the framework of type IIA supergravity coupled to

the tachyon field without the dilaton potential. We must deal with the α′ corrections to

the type IIA supergravity in these cases. We can see from figure 7 and figure 8 that the

tachyon asymptotically approaches to the linear function of t (3.20) as t → ∞ in both

cases. Thus, the tachyon matter is produced also in these cases. Taking the results in

the high temperature case into consideration, the universe evolves from the infinite past

in the accelerated expansion phase, and the universe evolves in the accelerated expansion

phase or in the accelerated contraction phase at last. We may be able to construct the

cosmological model without the initial singularity, but the curvature diverges within finite

time in the framework of dilaton gravity coupled to tachyon field, and we must consider

the α′ correction.
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Figure 8: The time evolution of the scale factor a(t) (left), the string coupling gs(t) (right) and

the tachyon T (t) (below) for the initial parameter τ = −1.16. We have set N = c1 = 1, c2 = c3 =

c4 = 0. The initial condition for the tachyon is T = 0.01 and Ṫ = 0.

5. Conclusion and discussion

We have investigated the time evolution of the universe in the presence of non-BPS D9-

branes by using Einstein gravity and dilaton gravity. We try to construct the following

scenario for the early universe: The universe expands near the Hagedorn temperature and

the open string gas on the non-BPS D9-branes dominates the total energy of the system

of strings and non-BPS D9-branes at first. The temperature decreases as the universe

expands. Then T = 0 becomes the local maximum of the potential and the non-BPS D9-

branes become unstable at low temperature. Finally, the tachyon rolls down the potential

and the non-BPS D9-branes disappear.

In the Einstein gravity case, the universe evolves in the decelerated expansion phase

near the Hagedorn temperature at first, and turns to be in the inflation phase, and finally

evolves in the decelerated expansion phase. We obtain two types of cosmological scenario

in the dilaton gravity case. First, the universe evolves in the decelerated expansion phase at

high temperature, and this phase is kept even at low temperature. Secondly, the universe

evolves from the infinite past in the accelerated expansion phase, and the universe evolves

in the accelerated expansion phase or in the accelerated contraction phase at last.

We have only dealt with the high temperature case and the zero temperature case.

However, we must derive a solution at intermediate temperature in order to discuss our

cosmological model more precisely7. In addition to this, we must consider α′ correction

7It must be noted that the tachyon field need not satisfy the slow-roll condition in the (9+1)-dimensional

case. It is sufficient that the smoothness and flatness problems are resolved on our Brane World during its

formation.
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for supergravity, higher derivative of the tachyon field, higher-loop correction, and so on.

Much still remains to be done.

We have constructed our model by using dilaton gravity without the dilaton potential

in this paper. However there is a possibility that, if we consider dilaton gravity with

the dilaton potential, we can find out a solution which interpolate smoothly between the

accelerated expansion phase and decelerated expansion one. It is worth while examining

dilaton gravity with the dilaton potential and deriving the energy condition for graceful

exit like it has been done in the case of the pre-big bang scenario [40].

We have only considered the very simple case that the tachyon field is represented as

(1.4) and that the tachyon rolls down homogeneously. In general, we must deal with an

arbitrary matrix which depends not only on the time coordinate t but also on the spatial

coordinate xi. If the tachyon condensates in a topologically non-trivial configuration, lower

dimensional branes form as topological defects as we have mentioned in section 1. We are

able to argue the probability of formation of any type of branes if we can estimate the time

evolution of the tachyon field in the gravitational background. In particular, it is worth

while investigating the D3-brane case, since its world volume is 4-dimensional spacetime.

It would be interesting to examine the possibility of cosmological brane models such as

Randall-Sundrum model [41, 42], Brane Gas Cosmology [43], ekpyrotic universe [44], KKLT

model [45] and KKLMMT model [46] in this context [20, 28 – 31].

We have discussed the production of tachyon matter, but ignored the creation of closed

strings from the decaying non-BPS D9-branes. The creation of closed strings in the rolling

tachyon background has been discussed recently [47]. Sen, Yi, Yee and Gutperle have

emphasized that tachyon matter is nothing but the closed strings created at the end of

brane decay based on the analysis of decay of non-BPS D-brane in the presence of electric

field [48]. It would be interesting to investigate the effect of the closed strings to our

cosmological model.
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A. Minahan-Zwiebach model case

Here, we shortly mention the Minahan-Zwiebach model case. The action we consider is the

sum of that for Einstein-Hilbert one (2.3) and that for Minahan-Zwiebach model (2.16).

Then the equations of motion are given by

Rµν − 1

2
gµνR + µκ2e−αT 2

gµν (λ∇αT∇αT + 1) − 2µκ2e−αT 2

λ∇µT∇νT = 0, (A.1)
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Figure 9: The time evolution of the tachyon T in the case of Einstein gravity coupled to tachyon

field in the Minahan-Zwiebach model. We have set a0 = N = 1. The initial condition for the

tachyon is T = 0.01 and Ṫ = 0 at t = 1.

λ∇µ∇µT − αλT∇µT∇µT + αT = 0. (A.2)

We assume that the universe is homogeneous and isotropic, and that the line element and

tachyon T are given by (3.2) and (3.15), respectively, as we have done so far. Then the

equations of motion are rewritten as

36H2 − µκ2e−αT 2

(λṪ 2 + 1) = 0, (A.3)

8Ḣ + 36H2 + µκ2e−αT 2

(λṪ 2 − 1) = 0, (A.4)

λT̈ + 9λHṪ − αλT Ṫ 2 − αT = 0. (A.5)

We choose the initial condition close to de Sitter solution like in the section 3.2. The

result of numerical calculation is depicted in figure 9. The tachyon reaches to the potential

minimum within finite time as Sugimoto and Terashima have pointed out [25]. We can

also show that the tachyon diverges within finite time in the dilaton gravity case.
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